Distribution of GABAergic neurons and axon terminals in the macaque striate cortex.

نویسندگان

  • D Fitzpatrick
  • J S Lund
  • D E Schmechel
  • A C Towles
چکیده

Antisera to glutamic acid decarboxylase (GAD) and gamma-aminobutyric acid (GABA) have been used to characterize the morphology and distribution of presumed GABAergic neurons and axon terminals within the macaque striate cortex. Despite some differences in the relative sensitivity of these antisera for detecting cell bodies and terminals, the overall patterns of labeling appear quite similar. GABAergic axon terminals are particularly prominent in zones known to receive the bulk of the projections from the lateral geniculate nucleus; laminae 4C, 4A, and the cytochrome-rich patches of lamina 3. In lamina 4A, GABAergic terminals are distributed in a honeycomb pattern which appears to match closely the spatial pattern of geniculate terminations in this region. Quantitative analysis of axon terminals that contain flat vesicles and form symmetric synaptic contacts (FS terminals) in lamina 4C beta and in lamina 5 suggest that the prominence of GAD and GABA axon terminal labeling in the geniculate recipient zones is due, at least in part, to the presence of larger GABAergic axon terminals in these regions. GABAergic cell bodies and their initial dendritic segments display morphological features characteristic of nonpyramidal neurons and are found in all layers of striate cortex. The density of GAD and GABA immunoreactive neurons is greatest in laminae 2-3A, 4A, and 4C beta. The distribution of GABAergic neurons within lamina 3 does not appear to be correlated with the patchy distribution of cytochrome oxidase in this region; i.e., there is no significant difference in the density of GAD and GABA immunoreactive neurons in cytochrome-rich and cytochrome-poor regions of lamina 3. Counts of labeled and unlabeled neurons indicate that GABA immunoreactive neurons make up at least 15% of the neurons in striate cortex. Layer 1 is distinct from the other cortical layers by virtue of its high percentage (77-81%) of GABAergic neurons. Among the other layers, the proportion of GABAergic neurons varies from roughly 20% in laminae 2-3A to 12% in laminae 5 and 6. Finally, there are conspicuous laminar differences in the size and dendritic arrangement of GAD and GABA immunoreactive neurons. Lamina 4C alpha and lamina 6 are distinguished from the other layers by the presence of populations of large GABAergic neurons, some of which have horizontally spreading dendritic processes. GABAergic neurons within the superficial layers are significantly smaller and the majority appear to have vertically oriented dendritic processes.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targets and Quantitative Distribution of GABAergic Synapses in the Visual Cortex of the Cat.

The morphology and postsynaptic targets of GABA-containing boutons were determined in the striate cortex of cat, using a postembedding immunocytochemical technique at the electron microscopic level. Two types of terminals, both making symmetrical synaptic contacts, were GABA-positive. The first type (95% of all GABA-positive boutons) contained small pleomorphic vesicles, the second type (5%) co...

متن کامل

Glutamic acid decarboxylase in the striate cortex of normal and monocularly deprived kittens.

Degeneration of the thalamic fibers in the visual cortex of turtles leads to an increase in the numerical density of cortical synapses with flattened vesicles and symmetrical membrane differentiations (Smith, L. M., and F. F. Ebner (1980) Soc. Neurosci. Abstr. 6: 328). This change correlates with an increase in the cortical activity of glutamic acid decarboxylase (GAD), the synthetic enzyme for...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Axo-axonic synapses formed by somatostatin-expressing GABAergic neurons in rat and monkey visual cortex.

In cerebral cortex of rat and monkey, the neuropeptide somatostatin (SOM) marks a population of nonpyramidal cells (McDonald et al. [1982] J. Neurocytol. 11:809-824; Hendry et al. [1984] J. Neurosci. 4:2497:2517; Laemle and Feldman [1985] J. Comp. Neurol. 233:452-462; Meineke and Peters [1986] J. Neurocytol. 15:121-136; DeLima and Morrison [1989] J. Comp. Neurol. 283:212-227) that represent a d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 264 1  شماره 

صفحات  -

تاریخ انتشار 1987